Math 564: Advance Analysis 1

Lecture 15

<u>Num</u> If $f_n \rightarrow_{\mu} f$ in measure (e.g. when $f_n \rightarrow_{l'} f$), *Hure* is a subsequence $(f_{-\mu})$ that vouverges to $f_{-q.e.}$ Observe (al home) that if in > 1 f then (for) is cauly in measure, so if is enough to prove the following stronger themen: Theorem (completionen of convergence in measure). Let (fin) be cauchy in measure. Then I d'-measurcable facchion F s.t. (a) fine > f a.e. for some subsequence (fine) (b) fy - yr f. Proof. For (b), it's enough to show $f_{H_R} \rightarrow f$ for some subsequence, by HW. In other words, we can, WLOG, restrict to subsequences. <u>(Iaim (Speeding up)</u>. WIDG, up to restricting to a subsequence, we mag assure NA J₂₋₁ (fn, fn+m) < 2⁻¹. Pred. We build a subsequence (fnx) c.t. VK J_{2-K} (fnx, fnx+m) < 2^{-K}. Let no be s.t. $\forall n \ge n_0$ ve have $\delta_{2^{-0}}(f_{n_0}, f_n) < 2^{-0}$. Let $n_1 \ge n_0$ be s.t. $\forall n \ge n_1$, ve have $\delta_{2^{-1}}(f_{n_1}, f_n) < 2^{-1}$. Thus, the measures of the sets A2-4 (Fu, furi) are <2", and heave

are sumplie. By Boul-Cartelli, for a.e.
$$\times \exists N_{k}$$
 s.f. $\times 4B_{N_{k}} = U$
Agen (In, Farth). We show that $(f_{k}(k))$ is Cauchy. Indeed, $\forall u_{k} h_{k}^{n_{k}}$
 $|f_{u}(k) - f_{u+u}(k)| \leq \sum_{i=0}^{m-1} |f_{ni}(k) - f_{neiff}(k)| \leq 2^{-(ni)} < 2^{-nr!}$ (A)
Thus, $\exists u(k) \rightarrow some number drooded by $f(k)$. $f(s)$ a prize built
measurable from times, and hence in causeroble.
We also show the functions, and hence in causeroble.
We also show M functions, and hence in causeroble.
We also show M functions, and hence in causeroble.
We also show M functions, and hence is causeroble.
We also show M functions, and hence is causeroble.
We also show M functions, and hence is causeroble.
We also show M functions, and hence is causeroble.
Need to show M functions, and hence is causeroble.
But (K) implies that $\forall x \notin B_{N, x}$ and $\forall u \gtrsim N$, $|f_{u}(k) - f(k)| \le 2^{-n+1}$
So $\forall u \gg N$, $\Delta_{u}(f_{u}, f) \ge \Delta_{gN+1}(f_{u}, f) \ge B_{N, x}$ so $\delta_{u}(f_{u}, f) \le J^{*}(B_{N}) \le \sum J^{*}(\Delta_{2^{-n}}(f_{u}, f_{u+1})) \le \sum 2^{-n} = 2^{-N+1}$, which is arbitrering tradely the show $maxer \le 5$.
Supply consubtries to the ket (x, t) be a finite measure space and left
(P_{u}) be an increasing seq. of massaches sets, M_{unk} of $J \le P_{u}(x)$ holds.
Proof. Observe M $X = (M_{P,u} = S) - M(P_{u}) > F(k) < \infty$, $M_{ux} = M(x) holds.$
Proof. Use have $\sqrt{2} > 0$ $\sqrt{2} = 0$ for $X' \le X$ -accurable $J(X, X') \le J$
 $\alpha = M_{u}h_{u} + A_{u} < V > 0 = X' \le X$ -accurable $J(X, X') \le J$
 $\alpha = M_{u}h_{u}h_{u} < V > 0 + Voort x \in X = N$. So $M(P_{u}) - f(k)| < 2 = M_{u}TN$$

Thus Ysyd INg Ydg, rex PNg (x) holds Let $\Sigma_{\mathbf{K}} \rightarrow \mathcal{O}$ leg, $\Sigma_{\mathbf{k}} := \frac{1}{\mathbf{k}}$). Then $\forall \Sigma_{\mathbf{K}} = \exists N_{\mathbf{K}} \quad \forall \neg S_{\mathbf{k}} \in X \quad \mathcal{P}_{N_{\mathbf{K}}}(\mathbf{k}) \text{ holds, chere } S_{\mathbf{k}} := d \cdot 2^{-\mathbf{k} \cdot \mathbf{j}}$ I - other words, the set V $X_{k} := \{x \in X : |f_{n}(x) - f(x)\} < \xi_{k} \quad \forall u \ge N_{k}\}$ $\begin{array}{cccc} k_{qs} & k_{easure} & \mathcal{F}(X) - \delta_{k} \\ Then & X' := (X_{k} & works & \mathcal{F}(X \setminus X') \in \sum_{k \in AV} \mathcal{F}(X \setminus X_{k}) \in \mathbb{Z}J \cdot 2^{-k-1}J \\ & k \in AV \end{array}$ For all $2\kappa \forall x \in X'$ $|f_n(\kappa) - f(\kappa)| < 2\kappa \forall n \ge N_{\kappa}$. Product measures and Fubini. let (X, M, J) and (Y, N, v) be measure spaces. Let MON denote the J-algebra generated by rectanges, i.e. sets of the form A×B shere AEM of BEN. for all AXBEMXN. This Pis unique if A and V are O-finite, in chich case we denote it by 1×12. Proof. let A be the algebra generated by achanges, hence A = Stimite unions of rectaryles S. We define the reasure I on A by $S(\bigcup_{n \in \mathbb{N}} A_n \times B_n) := \sum_{n \in \mathbb{N}} \mathcal{F}(A_n) \cdot \mathcal{F}(B_n).$ $\mathcal{J}(A) \cdot \mathcal{V}(B) = \sum_{n \in rN} \mathcal{J}(A_n) \cdot \mathcal{V}(B_n).$

We show this with integrals. We have that
$$I_{A \times B} = \sum_{v \in A} I_{A \times B \times V}$$

and $I_{A \times D}(x, y) = I_{A}(x) \cdot I_{B}(y)$. We integrate to be divided with y of y
and $y \in I_{A}$, for each $x \in X$:
 $Y = \prod_{i=1}^{N} I_{A}(x) \cdot I_{B}(y) = \int_{i=1}^{N} I_{A_{i}}(x) \cdot I_{B_{i}}(y) dv(y) = \sum_{i=1}^{N} Oldv$
 $Y = \prod_{i=1}^{N} Y$
 $I_{A}(x) \cdot v(B) = \int_{i=1}^{N} I_{A_{i}}(x) \cdot I_{B_{i}}(y) dv(y) = \sum_{i=1}^{N} Oldv$
 $Y = \prod_{i=1}^{N} Y$
 $I_{A_{i}}(x) \cdot v(B) = \sum_{i=1}^{N} I_{A_{i}}(x) \cdot v(B_{i})$.
We integrate again over x and a prime the MCT:
 $v(B) \cdot f(A) = v(B) \cdot \int_{i=1}^{N} I_{A}(x) df(x) = \sum_{i=1}^{N} V(B_{i}) \cdot \int_{i=1}^{N} I_{A_{i}}(x) \cdot v(B_{i})$.
Thus, S is a promensure on A , here Carethéodory's theorem applies. \Box
Finiti-Tokelli theorem. Let $[X_{i}, U_{i}, J_{i}] = \int_{i=1}^{N} I_{A_{i}}(y - f_{i}) \cdot f(A) = \sum_{i=1}^{N} I_{A_{i}}(x) \cdot v(B)$.
Thus, S is a promensure on A , here I_{i} carethéodory's theorem applies. \Box
spaces. Let f be a $J_{X,Y} - \dots \in S \subseteq X \setminus J_{Y}$ $f_{X} : Y \to IO_{i} \otimes J_{i}$
 $Y - \dots \in S \subseteq IO_{i} \otimes J_{i}$ and for $Y - O(A \cap X + Y) \to IO_{i} \otimes J_{i}$
 $X \to IO_{i} \otimes I_{i}$ and $I_{A_{i}}$ theorem is surreally on J_{i} is $J = \dots \in S \subseteq IO_{i} \otimes J_{i}$
 $X \to J_{i} \otimes J_{i}$ and $I_{A_{i}}$ theorem is surreally $X \to IO_{i} \otimes J_{i}$
 $X \to IO_{i} \otimes J_{i}$ and $I_{A_{i}}$ $Y \to IO_{i} \otimes J_{i}$
 $X \to IO_{i} \otimes J_{i}$ and $I_{A_{i}}$ $Y \to IO_{i} \otimes J_{i}$
 $X \to IO_{i} \otimes J_{i}$ and $I_{A_{i}}$ $Y \to IO_{i} \otimes J_{i}$
 $X \to IO_{i} \otimes J_{i}$ and $I_{A_{i}}$ $Y \to IO_{i} \otimes J_{i}$
 $X \to IO_{i} \otimes J_{i}$ $X \to Y$
 $Y \to IO_{i} \otimes J_{i}$ $X \to IO_{i} \otimes J_{i}$ $X \to IO_{i} \otimes J_{i}$ $X \to IO_{i} \otimes J_{i}$
 Y